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Background: Approximately one third of all major depression patients fail to respond to conventional
pharmacological antidepressants, and brain stimulation methods pose a promising alternative for this
population. Recently, based on repeated multifactorial selective inbreeding of rats for depressive-like be-
haviors, we introduced a novel animal model for MDD. Rats from this Depressive Rat Line (DRL) exhibit
inherent depressive-like behaviors, which are correlated with lower levels of brain-derived neuro-
trophic factor (BDNF) in specific brain regions. In addition, DRL rats do not respond to antidepressant
medication but respond to electroconvulsive treatment, and they can thus be utilized to test the effec-
Animal model tiveness of brain stimulation on hereditary, medication-resistant depressive-like behaviors.
Brain stimulation Objective: To test the effect of sub-convulsive electrical stimulation (SCES) of the prelimbic cortex, using
BDNF TMS-like temporal pattern of stimulation, on depressive-like behaviors and regional BDNF levels in DRL
Antidepressant rats.
Prefrontal cortex Methods: SCES sessions were administered daily for 10 days through chronically implanted electrodes.
Temporal stimulation parameters were similar to those used in TMS for major depression in human pa-
tients. Depressive-like behaviors were assayed after treatment, followed by brain extraction and regional
BDNF measurements.
Results: SCES normalized both the depressive-like behaviors and the reduced BDNF levels observed in
DRL rats. Correlation analyses suggest that changes in specific behaviors are mediated, at least in part,
by BDNF expression in reward-related brain regions.
Conclusions: Brain stimulation is effective in a drug-resistant, inherited animal model for depression. BDNF
alterations in specific regions may mediate different antidepressant effects.

© 2015 Elsevier Inc. All rights reserved.
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Introduction

Major depressive disorder (MDD) is a chronic brain disease char-
acterized by several co-occurring behavioral symptoms, including
anhedonia, loss of interest and reduced motivation, fatigue, sleep
disturbances, and more [1]. Although environmental factors often
trigger MDD, the heritability of this disease is estimated at 40—
50% [2]. Despite extensive attempts to improve antidepressant
treatment strategies during the past decades, about 30% of all MDD
patients are still considered “drug-resistant” and do not respond to
pharmacotherapy, while many others refrain from pharmacotherapy

* Corresponding author. Tel.: +972 8 647 2646; fax: +972 8 646 1713.
E-mail address: azangen@bgu.ac.il (A. Zangen).

1935-861X/© 2015 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.brs.2015.10.009

due to its considerable side effects [3-6]. Brain-stimulation tech-
niques can reduce depressive symptoms and have relatively high
response rates in drug-resistant MDD patients [7-15], although some
techniques have substantial side effects and other caveats [16-18].

Albeit the obvious differences between humans and animal
models, preclinical research can help evaluate potential mecha-
nisms and spatiotemporal parameters of brain stimulation treatments
[19-21] and, accordingly, several studies evaluated effects of brain
stimulation on conventional animal models for MDD [22-26]. To
induce the depressive-like state, most studies employed the widely
used chronic mild stress (CMS) paradigms [27]; this approach,
however, completely lacks the hereditable component of depres-
sion (which may be intimately involved in the translational aspects
of the treatment [2,28]) and does not model “drug-resistant” MDD
[29,30].
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By selectively inbreeding rats that show a multifactorial
depressive-like behavior, our group has recently developed the “De-
pressed Rat Line” (DRL) model for MDD [31]. The phenotype of DRL
rats includes inherent depressive-like behavioral symptoms accom-
panied by a significant reduction in hippocampal brain-derived
neurotrophic factor (BDNF) levels, a phenomenon that was sug-
gested to correlate with and even cause depression in both animal
models and humans [32-35]. Thus, DRL rats appear to model he-
reditable components of MDD. Moreover, DRL rats do not respond
to pharmacological antidepressants (namely, to fluoxetine or de-
sipramine), although they do respond to electroconvulsive therapy
(ECT); in that respect, DRL rats appear to model, at least to some
extent, drug-resistant MDD.

Here, we studied the phenotypic (behavioral and BDNF-related)
alterations in DRL rats treated with repeated sub-convulsive elec-
trical stimulations (SCES) of the prelimbic cortex (PLC), delivered
through chronically implanted electrodes. Unlike deep-brain stim-
ulation (DBS), which is applied at relatively high frequencies (100-
140 Hz) and is based on a continuous (24 h/day, 7 days/week)
interference with circuit activity [36], we focused on the long-
term, plasticity-related effects of a relatively low-frequency (20 Hz)
stimulation trains applied repeatedly for a short period (10 min/day
for 10 days). We employed a temporal stimulation pattern resem-
bling the pattern used for repeated transcranial magnetic stimulation
(rTMS) treatments of MDD [37-41]; this pattern is suggested to
induce long-lasting neuroplastic alterations [42] that can effective-
ly treat MDD in moderately drug-resistant patients [38-41], although
it is considerably less effective in extremely drug-resistant or
psychotic-depressive patients [38,43]. An ‘TTMS-like’ SCES pattern
has previously been shown to reduce depressive-like symptoms in
wild-type rats subjected to CMS [24], but it was never tested in a
drug-resistant, hereditary model of MDD.

Because ECT in DRL rats has been shown to ameliorate depressive-
like behaviors and increase hippocampal BDNF levels [31], and
because PLC SCES in rats submitted to CMS has been shown to ame-
liorate depressive-like behaviors and increase hippocampal and
striatal BDNF levels [24], we hypothesized that a localized sub-
convulsive PLC stimulation (PLC SCES) in DRL rats will be sufficient
to ameliorate depressive-like behaviors and affect BDNF expression.

Materials and methods
Experimental design and animals

We tested behavioral and BDNF responses to treatment with re-
peated SCES to the PLC in adult (300 gr) male DRL and wild-type
(WT) Sprague-Dawley rats (N = 18-19 in each group). All rats were
implanted with a SCES electrode (see below) and allowed to recover
for one week, after which they were treated for 10 consecutive days
(10 min/day) with either real or sham SCES (Fig. 1). Then, during

Surgeries Brain
cxtraction
] Recovery | SCES ] Behavioral |
1 I treatment 1 tests 1 1
60 67 77 98 101
Age (d)

Figure 1. Experimental timeline. Sixty-days-old male Sprague-Dawley WT and DRL
rats (N=18-19 in each group) were implanted with a SCES electrode. After one week
of recovery, 10-min long SCES sessions were administered daily for 10 consecutive
days. During the following three weeks, all rats underwent behavioral assays in the
following order: Sucrose Preference Assay (SPA), Home Cage Locomotion Assay (HCLA),
exploration of a novel environment, and Forced Swim Test (FST). Three days after
the FST, the rats were sacrificed and their brains were removed for a BDNF ELISA.

the three weeks following the SCES treatment, the rats under-
went a series of behavioral assays (see details below) in the following
order: Sucrose Preference Assay (SPA), Home Cage Locomotion Assay
(HCLA), exploration of a novel environment (Exploration assay), and
Forced Swim Test (FST). To avoid the short-term effect of FST-
induced stress [44], all rats were allowed three days of resting before
sacrificing them and analyzing their brains for BDNF levels. All be-
havioral assays and BDNF analyses were blind to subject group
identity.

All rats were singly housed and maintained in a 12 h light/12 h
dark cycle with food and water provided ad libitum. All treat-
ments and behavioral assays were conducted at approximately the
middle of the dark phase of the cycle (an exception to this was the
home cage locomotion assay, which was monitored continu-
ously). DRL rats were bred in our animal facilities (see below); WT
rats were purchased from Harlan, Israel, and were allowed 2 weeks
of habituation to the animal facility prior to surgery, treatment and
behavioral assays. All rats were handled and all experiments were
conducted according to the guidelines of the Committee for the
Ethical Care and Use of Animals in Research (CECUAR) of Ben-
Gurion University of the Negev (Beer-Sheva, Israel), which are in
complete accordance with the NIH guidelines for care and use of
laboratory animals.

The DRL rats used in this study were direct decedents of the rats
used in our previous report [31], which originated from a pair of
WT Sprague-Dawley parents. We continued to inbreed those rats,
namely, by artificially selecting for depressive-like behavioral phe-
notypes as detailed in reference 31, such that all rats used in the
current study were of generations S18-S23. To verify that DRL rats
of generations S18-S23 show drug-resistant depressive-like phe-
notypes similar to those of the earlier (S5-S10) generations - we
also tested the behavioral and BDNF-related response of some of
the S18-S23 DRL rats to fluoxetine. The relevant methodology and
findings of those experiments are detailed in the Supplementary
Material of this article.

Electrode implantation and SCES treatment

We followed the protocol detailed and explained in reference
24. Briefly, we implanted anesthetized rats with a stimulating
electrode (Plastics One, Roanoke, VA) in the left PLC (coordinates
in millimeters relative to bregma: +3.7 anteroposterior, —0.4
mediolateral, +3.5 dorsoventral from scalp level). Immediately
following the surgery, we injected rats subcutaneously with
Neurocarp (Pfizer; 0.03 ml of 50 mg/ml carprofen) and applied
V-Dalgin (Dipyron) to their drinking water for 4 days thereafter
(1.2 ml in 250 ml of drinking water). Experiments began 7 days
after electrode implantation. Because we extracted tissue punches
from the PLC for BDNF analyses at the end of the experiments (see
below), it was impossible to verify electrode locations histologi-
cally. However, given our extensive experience in electrode
implantation into the PLC (in reference 24, for instance, histologi-
cal analyses verified that more than 90% of our PLC-implanted
electrodes were located appropriately), we assume that most
electrodes were in the PLC.

The stimulation regime included daily ten-minute sessions ad-
ministered for 10 consecutive days. In each session, the implanted
electrode was connected with a flexible wire to an electrical stim-
ulator and the rat was then placed in its home cage. As detailed in
reference 24, we used a TMS-like temporal pattern of pulses, such
that each stimulation cycle comprised 100 pulses (pulse width = 0.2
msec; pulse intensity =400 puA) applied during a 5-s period (i.e., at
20 Hz), followed by a 20-s inter-train interval (pause). Sham-
treated controls underwent the same surgery and handling protocol,
but no current was applied through the electrode.
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Behavioral analyses

To evaluate depressive-like behaviors, we used well-established
paradigms, as we detailed elsewhere [31]. In the SPA, the consump-
tion of a 0.2% sucrose solution as percentage of total liquid
consumption was calculated daily for each rat and averaged over
10 days to determine sucrose preference. In the HCLA, locomotion
was calculated as the average overall distance traveled in the home
cage during three consecutive nights. In the Exploration assay, the
distance traveled, number of rearings, and number of visits in the
central region of a 40x40 cm exploration box were monitored au-
tomatically via interruption of photo beams. In the forced swim test
(FST), the rat was placed in a custom-built cylindrical tank (40 cm
high and 18 cm in diameter) for a single 5-min session, its behav-
ior was monitored, and its swimming and immobility time were later
extracted and analyzed with a software developed in our labora-
tory [45,46].

Biochemical analyses

The complete protocols for tissue punches, protein extraction,
and BDNF ELISA are described in our previous works [31,47]. We
extracted the brains three days following the last behavioral assay
and used a sandwich ELISA to analyze BDNF concentrations (nor-
malized to tissue weight) in bilateral tissue punches obtained from
the prelimbic cortex (PLC), nucleus accumbens (NAc), striatum, and
dorsal and ventral hippocampus (dHC and vHC, respectively), as de-
tailed in Fig. S1. Because SCES was applied unilaterally to the left
PLC, we separated the left and right PLC (IPLC and rPLC, respec-
tively) for the BDNF analysis.

Statistical analyses

Significance of treatment effect was analyzed with a two-way
analysis of variance (ANOVA) model, with Strain (DRL/WT) and
Treatment (SCES/Sham) as the independent variables, and behav-
ioral score or BDNF levels in each brain region as the dependent
variables. When significant main effects or interactions were found,
a Fisher’s post-hoc test was conducted. Data distributions for all
ANOVA analyses were tested for normality by using the Kolmogorov-
Smirnov test.

A backward stepwise regression procedure was used to select
the brain regions wherein BDNF levels best predict behavioral scores.
We began with a complete regression model, in which BDNF levels
in seven brain regions were used as predictors of behavior, and grad-
ually subtracted variables that did not significantly contribute to the
model. The final model was selected when no more variables could
be subtracted without degrading the model.

A mediation model was used to test whether the independent
variables may be mediated by BDNF levels in certain brain regions
(see Results). Because we were interested in evaluating whether
several independent variables (strain, treatment, and their inter-
action) exert a conditional mediation influence on the dependent
variable (behavior), the commonly used Sobel test [48] —which
regards simple mediating models, wherein one independent vari-
able exerts its influence on one dependent variable through one
mediating variable — was not suitable for the current study; instead,
we employed the principles suggested previously by Baronand Kenny
[49]. Briefly, the procedure included comparing a full model to a
reduced model, as follows: to construct the full model, we used a
two-way ANOVA with Strain (DRL/WT) and Treatment (SCES/
Sham) as independent variables and with behavioral scores as a
dependent variable. Then, to construct the reduced model, we first
calculated the simple linear regression for each strain, predicting
the behavioral score by the BDNF level. Then, we constructed a set

of errors, defined as the numerical difference between each ob-
served score and the corresponding theoretical score predicted by
the linear model. Thus, this set of errors essentially reflects the ‘clean’
behavioral scores in which the influence of BDNF levels on behav-
ior is omitted. Finally, we performed a second ANOVA on these ‘clean’
scores and compared the results to the full ANOVA model. For cor-
relation analyses, we used False Discovery Rate (FDR [50]) to correct
for multiple comparisons.

Results are expressed as mean + SEM throughout the manu-
script. For brevity, we focus here on statistically significant
comparisons, whereas complete statistical analyses, including sig-
nificant and non-significant comparisons, are detailed in the
Supplementary Material of this article. All analyses were con-
ducted with Statistica software version 8.0 (Statsoft, Tulsa, OK, USA).

Results

We have previously characterized DRL rats as a drug-resistant
model of MDD [31]; however, rats used in that previous study were
of early generations of the artificial selection process (namely, S5-
$10), whereas those in our current study were of later generations
(S18-S23). Thus, we first verified that the DRL rats used in the current
study indeed show a similar inherent depressive-like phenotype that
is resistant to the commonly used antidepressant fluoxetine (see
Supplementary Material for details). Indeed, similar to their S5-
S10 predecessors (who showed resistance to desipramine or
fluoxetine treatments), S18-S23 DRL rats (N = 17), but not WT rats
(N=17), showed inherent depressive-like behavioral (Fig. S2 and
Table S1) and neurochemical (Fig. S3 and Table S2) phenotypes, that
were generally unresponsive to fluoxetine (a trend toward in-
creased BDNF levels was observed in fluoxetine-treated DRL rats,
but it was significant only in the dorsal hippocampus and was lower
than the increase observed following SCES). Thus, we continued to
elucidate the effect of repetitive SCES on the depressive-like phe-
notype of DRL rats.

Repetitive SCES ameliorates depressive-like behaviors in DRL rats

The 10-d SCES active (but not sham) treatment dramatically ame-
liorated most depressive-like behaviors in DRL rats (Fig. 2 and Table
S3). A significant main effect was found for Strain (DRL versus WT
rats) in the SPA (F(1,69)=13.27, p<0.001), FST (F(1,69)=9.8, p< 0.01),
HCLA (F(1,69)=16.88, p <0.001), and number of rearings in the Ex-
ploration assay (F(1,69)=8.1, p <0.01). In addition, a significant main
effect was found for Treatment (SCES versus sham) in the SPA
(F(1,69)=23.01, p<0.001) and FST (F(1, 69)=6.34, p<0.01), and in
the number of rearings (F(1,69)=19.1, p<0.001) and number of
center visits (F(1,69)=9.65, p < 0.01) in the Exploration assay. A sig-
nificant Strain x Treatment interaction was found in the SPA (F(1,
69)=14.03, p<0.001) and in the number of center visits in the Ex-
ploration assay (F(1,69)=10.44, p < 0.01). Post-hoc analyses revealed
that the behavior of sham-treated DRL rats was significantly more
depressive-like than that of sham-treated WT rats in the SPA
(p<0.001), FST (p <0.001), HCLA (p < 0.05), and in the number of
rearings (p < 0.01) and center visits (p < 0.05) in the Exploration assay.
SCES-treated DRL rats showed significantly less depressive-like be-
havior than sham-treated DRL rats in the SPA (p <0.001), FST
(p<0.01), and number of rearings (p <0.001) and center visits
(p<0.001) in the Exploration assay, but not in the HCLA or in dis-
tance traveled in the Exploration assay. Notably, following 10 days
of treatment, the behavior of SCES-treated DRL rats became com-
parable to that of sham-treated WT rats in the SPA (p=0.42), FST
(p=0.66), and the number of center visits (p = 0.052) and rearings
(p=0.27) in the Exploration assay.
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Figure 2. Repeated SCES treatment to the PLC normalizes inherent depressive-like behaviors in DRL rats. Behavioral scores of sham- and SCES-treated Depressive Rat Line
(DRL) and wild-type (WT) rats (N = 18-19 per group) in (a) the Sucrose Preference Assay (SPA); (b) the Forced Swim Test (FST); (c) the Home Cage Locomotion Assay (HCLA);
and (d-f) the different parameters of the Exploration assay. Sham-treated DRL rats exhibited a marked depressive-like behavior as compared with sham-treated WT rats,
including a lower preference for sucrose in the SPA, a shorter swimming duration in the FST, reduced locomotion in the HCLA, a lower number of rearings and center visits
in the Exploration assay. The SCES treatment ameliorated most of these depressive-like behaviors, such that the sucrose preference, swimming duration, rearing activity,
and number of center visits of SCES-treated DRL rats were significantly higher than those of sham-treated DRL rats (namely, by 16%, 57%, 68%, and 125%, respectively; N= 18-
19 per group). Moreover, following the SCES treatment, the pronounced inherent depressive-like behavior of DRL rats was practically normalized and generally became
comparable to that of WT rats in the aforementioned assays, but not in the HCLA. The SCES treatment had no effect on any of these behaviors in the WT rats. Bars represent
means + SEMs. *p < 0.05, **p <0.01, ***p <0.001 as compared with sham-treated WT rats; #p <0.05 ##p < 0.01, #*##p <0.001 as compared with sham-treated DRL rats.

Repetitive SCES increases BDNF levels in DRL rats, in correlation with
the behavioral response to the treatment

The SCES treatment induced a significant increase in BDNF protein
levels within all the examined reward-related brain regions of DRL
rats (Fig. 3 and Table S4). A significant main effect was found for
Treatment (SCES versus sham) in the dHC (F(1,69) = 28.93, p < 0.001),
VHC (F(1,69) =5.33, p < 0.05), right PLC (F(1,32) =4.65, p < 0.05), and
striatum (F(1, 69)=15.23, p<0.01). A significant Strain x Treat-
ment interaction was found in the dHC (F(1,69)=13.82, p<0.01),
left PLC (F(1,32)=6.05, p < 0.05), right PLC (F(1,32)=6.09, p < 0.05),
and striatum (F(1, 69)=16.41, p <0.001). A marginally significant
interaction was found in the vHC (F(1,69)=3.91, p <0.052). Post-
hoc analyses revealed that the BDNF levels of sham-treated DRL rats
were significantly lower than those of sham-treated WT rats in the
dHC (p < 0.005), IPLC (p < 0.05), rPLC (p < 0.05), and striatum
(p <0.001). In addition, BDNF levels in SCES-treated DRL rats were
significantly higher than in sham-treated DRL rats in the dHC
(p<0.001), vHC (p < 0.005), IPLC (p < 0.01), rPLC (p < 0.01), and stria-
tum (p <0.001).

To further explore the association between BDNF levels and
depressive-like behaviors in DRL rats, we calculated the Pearson
correlation coefficients between BDNF levels and behavioral scores
in the SPA and FST, wherein the depressive-like behavior of DRL
rats was most pronounced (Table 1, Fig. 4). These analyses showed
a significant linear correlation between behavioral score in the
SPA and BDNF levels in the dHC, striatum, rPLC and vHC; and
between behavioral score in the FST and BDNF levels in the rPLC,
IPLC, vHC and dHC (brain areas are denoted by descending order

of association magnitude). No such correlations were found in WT
rats, suggesting that BDNF levels may mediate depressive-like be-
haviors in DRL rats, as well as the effect of SCES on those behaviors.
To test this possibility, we used a mediation model, as described
below.

A mediation model indicates strong relationship between BDNF levels
in the dHC or rPLC and the effect of strain and treatment on SPA and
FST, respectively

We investigated whether BDNF levels may mediate (1) the be-
havioral differences between DRL and WT rats; and (2) the differential
behavioral effects of the SCES treatment. Here, again, we focused
on the SPA and FST because behavioral differences in these assays
were the most pronounced and because these assays are most often
used to assess depressive-like behaviors in animal models. As a first
step, we used a backward stepwise regression procedure (see Ma-
terials and Methods) to select the brain regions wherein BDNF levels
best predict behavioral scores in each of these assays. The step-
wise selection algorithm concluded in two final models, wherein
BDNF levels in the dHC were the sole predictor of behavioral score
in the SPA, and BDNF levels in the rPLC were the sole predictor of
behavioral score in the FST. All other six predictors (i.e., BDNF levels
in each of the other brain regions tested) were redundant, such that
excluding them from the model did not significantly decrease pre-
diction power.

To test whether the effect of Strain and Treatment on the be-
havioral scores in the SPA and FST may be mediated by BDNF levels
in the dHC and rPLC, respectively, we constructed a mediation model
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Figure 3. Repeated SCES treatment to the PLC normalizes BDNF levels in DRL rats. ELISA measurements of BDNF levels in the (a) dorsal hippocampus (dHC); (b) ventral
hippocampus (VHC); (c) left prelimbic cortex (left PLC); (d) right prelimbic cortex (right PLC); (e) striatum; and (f) nucleus accumbens (NAc) of sham- and SCES-treated
Depressive Rat Line (DRL) and wild-type (WT) rats (N =18-19 per group). A comparison between the sham-treated groups revealed that BDNF levels in DRL rats were sig-
nificantly lower than those in their WT counterparts in most brain regions examined, including the dHC, vHC, left PLC, right PLC, and striatum (namely, 20%, 16%, 42%, 43%
and 27% lower, respectively), but not in the NAc. The SCES treatment significantly increased BDNF levels in DRL rats, as compared with their sham-treated counterparts, in
the dHC (50% increase), vHC (30% increase), IPLC (107% increase), rPLC (93% increase), and striatum (46% increase). Bars represent mean + SEM of BDNF levels as percent of
those levels in sham-treated WT rats. *p < 0.05, **p < 0.01, ***p <0.001 as compared with sham-treated WT rats; #p < 0.05 #*#p <0.01, **#p <0.001 as compared with sham-

treated DRL rats.

(Fig. 5; see Materials and Methods). This model assumes that, if the
level of BDNF in the dHC (for the SPA) and rPLC (for the FST) indeed
serves as a mediating factor of behavior, then statistically elimi-
nating the influence that this factor has on behavior would decrease
the magnitude of the observed associations between behavioral score
and Strain and Treatment. Indeed, for the SPA, the full ANOVA model
explained 44% of the variance in behavioral scores and was highly
significant (F(3,69) = 18.08, p < 0.001), but statistically eliminating
the effect of dHC BDNF levels resulted in an ANOVA model that only
explained 5% of the variance, and was not significant (F(3,69) = 1.21,
p=0.31). In this reduced model, behavioral score was not affected
by either Strain (F(1,69)=0.0, p=0.98), Treatment (F(1,69)=3.34,

Table 1

Pearson correlation coefficients between BDNF levels in specific brain regions and
behavioral scores in the Sucrose Preference Assay (SPA) and in the Forced Swim Test
(FST).

VHc DHc rPLC IPLC Str Nac
DRL SPA 044" 0.72%** 0.66** 0.41 0.65*** 0.31
FST 0.42** 0.37 0.59** 0.58* 0.21 -0.1
WT SPA  0.09 -0.2 -0.25 0.69 -04 0.13
FST 0.03 0.12 0.45 -0.21 -0.08 0.32

Abbreviation as in Figure 3. *p < 0.05, **p < 0.01, ***p < 0.001.

p=0.07), or the Strain x Treatment interaction (F(1,69)=0.14, p=0.7).
A similar result was found for the effect of rPLC BDNF levels on be-
havioral scores in the FST. The full model explained 22% of the
behavioral variability and was highly significant (F(3,31) = 6.35,
p <0.001), whereas eliminating the effect of rPLC BDNF levels re-
sulted in a model that explained only 4% of the variability and was
not significant (F(3,31) =0.45, p=0.71). This reduced model was also
not affected by either Strain (F(1,31) = 0.0, p=0.96), Treatment
(F(1,31)=1.05, p=0.31), or the Strain x Treatment interaction
(F(1,31)=0.21, p=0.64). Taken together, these findings strongly
suggest the BDNF levels in the dHC and rPLC play a major role in
mediating the effects of both strain and treatment on depressive-
like behaviors.

Discussion

A major finding in our study is that SCES of the PLC, applied in
short daily sessions for 10 consecutive days, dramatically amelio-
rates most depressive-like behaviors in a hereditary rat model of
drug-resistant MDD, along with significant alterations in regional
BDNF expression. We used a unilateral left stimulation in light of
previous studies in MDD patients [51,52] and in animal models [24],
but the effects of bilateral or unilateral right stimulation might
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Figure 4. Simple linear regression models predicting behavioral scores in the SPA and FST by BDNF levels in the dHC (a, b) and rPLC (c, d), respectively. Abbreviations as in
previous figures. Filled and empty circles indicate SCES and sham treatment, respectively. Behavioral scores in the SPA (a, b) and in the FST (c, d) were correlated with dHC
(a, b) and rPLC (¢, d) BDNF levels in DRL rats (a, ¢) but not in WT rats (b, d). “Error” in (c) indicates the distance between one specific data point and the linear regression
model. A set of such errors was constructed to perform the mediation model shown in Fig. 5.

warrant future research. Our stimulation protocol, which general-
ly resembles temporal patterns used in human rTMS studies [53],
was well-tolerated by the rats and exerted long-term (>30 days) be-
havioral and neurochemical effects. The fact that it normalized
sucrose preference in DRL rats is particularly encouraging, because,
of all depressive-like symptoms, this assay is considered to have the
highest face validity to anhedonia [54] - which is a major symptom
of MDD. It is noteworthy that the SCES treatment did not normalize
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the reduction in home-cage locomotion observed in DRL rats. The
HCLA is often considered the animal analogue of psychomotor re-
tardation in MDD patients — a symptom presumably related
specifically to abnormal dopaminergic function (e.g., MDD pa-
tients exhibiting psychomotor retardation are responsive only to
selective dopamine-reuptake inhibitors [55-57]). Thus, as com-
pared with other depressive symptoms, psychomotor retardation
does not appear to be, in itself, an optimal measurement for

L
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Figure 5. BDNF levels in the dHC and rPLC mediate the effect of Strain and Treatment on behavioral scores in the SPA and FST, respectively. Abbreviations as in previous
figures. Triangles and squares indicate WT and DRL rats, respectively, and top (a, b) and bottom (c, d) panels show results for SPA and FST, respectively. Left panels (a, c)
show the full ANOVA models, which were calculated based on the observed behavioral scores. Right panels (b, d) show the reduced ANOVA models, which were calculated
on the sets of errors that were obtained by statistically omitting the effect of BDNF levels in the dHC and rPLC on the SPA and FST scores, respectively. See text for further

details.
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testing the efficacy of non-dopamine-related antidepressant
treatments.

An important finding of our study is that BDNF levels in specif-
ic brain regions, most prominently in the ventral PLC and dHC, may
mediate both the depressive-like behaviors and the effects of the
PLC-SCES treatment in DRL rats. The changes in BDNF levels in DRL
rats were detected more than three weeks after the last SCES session,
suggesting that the treatment induced long-term changes in brain
plasticity. It is possible that SCES or fluoxetine treatment also exerted
a more transient effect on BDNF levels (in other brain regions of
either DRL or WT rats) but, due to methodological constraints, we
were blind to these changes in the current experiment and they
should be examined in future studies (by sacrificing animals im-
mediately following treatment, without comprehensive behavioral
testing). Similar to the effects of SCES reported in the current study,
we have previously found that ECT (but not desipramine or
fluoxetine) ameliorates depressive-like behaviors in DRL rats, and
that this effect is accompanied by an increase in dHC BDNF expres-
sion. However, unlike in the current study, the amelioration of
depressive-like behaviors in ECT-treated DRL rats was not accom-
panied by changes in VHC and striatal BDNF levels [31], possibly
highlighting the importance of increasing BDNF levels in the dHC
(rather than in the vHC or striatum) for the antidepressant-like effects
of brain stimulation in DRL rats; unfortunately, PLC BDNF levels were
not evaluated in our previous ECT study. Similar long-term bene-
ficial effects of SCES on depressive-like behaviors have been
correlated with normalization of BDNF levels in the dHC (and in the
striatum) also in the CMS model of depression [24]. Taken togeth-
er, these findings are in line with the neurotrophic hypothesis of
depression, which postulates that a reduction in BDNF levels in spe-
cific brain areas is critical to the impaired neuroplasticity associated
with MDD [35,58-62] and that normalization of BDNF expression
is essential for the effectiveness of antidepressant treatments
[24,25,32,47,59,63-65]. It is not entirely clear how BDNF affects
depressive-like symptoms, but it is plausible that adult hippocam-
pal neurogenesis plays a role in recovery [66], e.g., through
interactions between BDNF and the serotoninergic receptor 5-HT1A
[66,67]. As dHC BDNF levels in DRL rats in the current study were
increased following the SCES treatment, future experiments that will
evaluate hippocampal neurogenesis in this model may further con-
tribute to our understanding of the mechanism underlying drug-
resistant MDD. In addition, our statistical analyses support a full
mediation model wherein BDNF levels in the dHC and rPLC explain
both the strain- and treatment-related behavioral variability in
sucrose preference and in swimming duration, respectively. It is note-
worthy that fluoxetine also somewhat increased BDNF levels in DRL
rats, an increase that was significant only in the dHC and was not
accompanied by a behavioral effect. Although there was a trend for
higher BDNF levels in fluoxetine-treated DRL rats, this increase was
very small and localized as compared with the robust and wide-
spread BDNF increase in SCES-treated rats. It is very plausible that
the small increase in BDNF levels in the dHC of fluoxetine-treated
rats was not sufficient to be manifested in behavioral changes, either
because it was too small in itself or because it was not accompa-
nied by a significant BDNF increase in other brain regions, most
probably in the PLC (e.g., lack of a possible synergistic effect). Direct
manipulation of BDNF (e.g., BDNF knockdown in specific brain
regions) in DRL rats may prove a causal relationship between re-
gional BDNF levels, specific depressive-like behaviors, and treatment
efficacy; however, such manipulations were beyond the scope
of the current study. Yet, if factors other than BDNF are directly re-
sponsible for the observed behavioral and neurochemical traits of
DRL rats, then those factors can be expected to correlate strongly
with BDNF levels and will probably belong to the same functional
system.

Conclusions

The DRL model can serve as substrate for elucidating neurobio-
logical mechanisms underlying inherited depressive-like behavior
that is, at least in part, resistant to antidepressant medications. There-
fore, this model can assist in the development and optimization of
novel therapeutic approaches for “drug-resistant” MDD patients. Not-
withstanding the obvious differences between animal models and
the human conditions that they were designed to mimic, the data
provided here suggest that multiple stimulation sessions target-
ing the prefrontal cortex can be effective in treating drug-resistant
and genetically predisposed MDD patients. Furthermore, our find-
ings indicate that such treatments may alleviate specific symptoms
of depression by normalizing BDNF levels in the hippocampus and
locally in the prefrontal cortex.
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